ایمن سازی آزمایشگاه های علمی در برابر زلزله

پیمان نرج آبادی فام

چکیده


زلزله را می­توان با توجه به قابلیت ایجاد بیشترین خسارت در کمترین زمان مؤثر و همچنین عدم تأثیر عملی پیش­بینی آن به‌عنوان مهم‌ترین حادثه­ی طبیعی از منظر مهندسی سازه و مدیریت بحران دانست. ازآنجایی‌که جلوگیری از وقوع این حادثه­ی طبیعی نیز عملاً میسر نیست، ساخت‌وساز ایمن و ایمن­سازی جوامع بشری مطمئن‌ترین و مؤثرترین راه مقابله با آن است. در این میان، آزمایشگاه­های علمی نظر به اهمیت ویژه­ای که دارند از اولویت­های ایمن­سازی به شمار می­آیند تا ضمن جلوگیری از ایجاد مانع در مقابل تولید یا گسترش علم و یا سایر اهداف تعریف شده مانند حمایت از صنعت و نیز سلامت دانشمندان و یا حتی سایر افراد جامعه (در صورت امکان انتشار مواد سمی) حفظ و دارایی­های ملی و اعتماد عمومی صیانت گردند. از این‌رو، در این مقاله اهمیت مسئله تبیین، جزئیات آن بررسی و راهکارها بحث می­شوند. به این منظور، فعالیت­های انجام شده در سایر کشورها و دانشگاه­های معتبری که در این زمینه پیشرو هستند مطالعه و عوامل مؤثر اعم از فنی، اقتصادی و اجتماعی تحلیل می­گردند. هر سه حوزه­ی قبل، حین و بعد وقوع زلزله مورد توجه قرار می­گیرند و آنچه بر این اساس نتیجه می­شود ضرورت توجه بر ایمن­سازی آزمایشگاه­ها و اماکن علمی در برابر زلزله با اولویت اقدامات حوزه­ی قبل زلزله در سه بخش (1) ساختگاه- سازه- اعضای غیر سازه‌ای،       (2) تجهیزات و مواد و (3) برنامه­ریزی مدیریت بحران برای حین و بعد زلزله است. هزینه­ این ایمن­سازی حدود 5 الی 10 درصد مجموع هزینه­های بازسازی تخمین زده می­شود.


Earthquake Protection of Scientific Laboratories

 Peyman Narjabadifam

 Assistant Professor, Department of Civil Engineering, Faculty of Engineering, University of Bonab, 5551761167 Bonab, Iran, narjabadi@tabrizu.ac.ir

 

Abstract

Earthquakes occur with little or no warning. They are capable of causing incredible damage in a short time-span. It is, moreover, not possible to prevent earthquakes or change the likelihood of an earthquake occurring. These are the reasons that make the earthquakes important in seismically active regions to be prepared through structural earthquake engineering and crisis management.

Structural earthquake engineering, as the art of using materials to create real structures with appropriate aseismic systems that safely withstand earthquake forces, is the main solution against earthquakes. Crisis management will be required if the structures are not safe.

Even though most contemporary building codes (such as those provided by FEMA - Federal Emergency Management Agency and ASCE - American Society of Civil Engineers) do contain detailed provisions aimed at controlling damage to structural and non-structural building systems, there are no similar detailed provisions for the seismic protection of non-structural components such as those of laboratories, hospitals, or other types of important buildings. FEMA 74, FEMA 396, FEMA 412, and some others are the examples of documents available with general recommendations for hospitals and industrial buildings. For the laboratories, however, a few studies have just been carried out by some leading universities.

It is well known that the seismic safety of hospitals, crisis management offices, and the other similar buildings is important. Seismic safety of scientific laboratories is also of high importance in the society. This is because of the important role of these laboratories with regard to different strategic, economic, and social measures. Some examples are: the strategic importance of scientific studies in the advanced laboratories, the high cost of equipment located in laboratories, and possible chemical spills.

Earthquake protection of laboratories requires engineering attention in three stages: before, during, and after earthquakes. Aseismic design or retrofit of laboratories with an especial attention on their contents is the main step before the earthquakes. Emergency Action Plan (EAP) should also be developed prior to an event. For the other two stages, the safety instructions should simply be followed.

The research presented in this paper unveil the directions toward earthquake protection of scientific laboratories, with an emphasis on aseismic design/retrofit and EAP-based preparedness. It is also shown that the cumulative cost of protection before earthquakes is just around 5-10% of structural restoration and the replacement of equipment after an earthquake.

Keywords: Seismic Safety; Site Conditions; Structure and Non-Structural Elements; Equipment; Crisis Management.

 



موضوع


ایمن سازی لرزه ای، شرایط ساختگاهی، سازه و اعضای غیر سازه‌ای، تجهیزات و مواد آزمایشگاهی، مدیریت بحران

تمام متن:

PDF

مراجع


Gioncu, V., Mazzolani, F.M. (2011) Earthquake Engineering for Structural Design. Spon Press (as an imprint of the Taylor and Francis group), New York, NY, USA, 1st ed., 581p.

Ambrasays, N.N. and Melville, C.P. (1982) A History of Persian Earthquakes. Cambridge University Press, Cambridge, UK, 1st ed., 240p.

Ghafory-Ashtiany, M. (2006) Earthquake Risk Management Strategies: Iranian Experience. International Institute of Earthquake Engineering and Seismology, Tehran, Iran, 29p.

Gates, A.E. and Ritchie, D. (2007) Encyclopedia of Earthquakes and Volcanoes. Facts on File (an imprint of Infobase Publishing), USA, 3rd ed., 349p.

Botis, M. and Harbic, C. (2011) A brief history upon seismic isolating systems. Bulletin of the Transilvania University of Brasov- Series I: Engineering Sciences, 5(54-1), 93-98.

Nishikawa, S. (2015) Incorporating Science and Technology for Disaster Risk Reduction, - the Japanese Experience. Planet @ Risk, 3(1).

Naderzadeh, A. (2009) Application of Seismic Base Isolation technology in Iran. Menshin, 2(63).

Robinson - Iran. (Accessed 14 April 2017) http://www.rslir.com/resume.html. Resume.

JSSI (Japan Society of Seismic Isolation) (Accessed 16 April 2017) SI-Data-2016 (PDF), http://www.jssi.or.jp/english/aboutus/database.html. Data-Base.

ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development) (Accessed 16 April 2017) Earthquakes: Italy leading country for applications of anti-seismic systems but critical situations still affect safety of building stock. http://www.enea.it/en/news. News.

Comerio, M.C. (2005) PEER Testbed Study on a Laboratory Building: Exercising Seismic Performance. Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, Berkeley, CA, USA, Report 2005/12, 131p.

Comerio, M.C. and Holmes, W.T. (2004) Seismic risk reduction of laboratory contents. 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, Paper No. 3389.

Holmes, W.T. and Comerio, M.C. (2003) Implementation Manual for the Seismic Protection of Laboratory Contents: Format and Case Studies. Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley. Berkeley, CA, USA, Report 2003/12, 224p.

Comerio, M.C. (2003) Seismic Protection of Laboratory Contents: The UC Berkeley Science Building Case Study. Institute of Urban and Regional Development, University of California, Berkeley. Berkeley, CA, USA, Working Paper 2003-02, 158p.

Comerio, M.C. (2003) The Economic Benefits of a Disaster Resistant University: Earthquake Loss Estimation for UC Berkeley. Institute of Urban and Regional Development, University of California, Berkeley. Berkeley, CA, USA, Working Paper 2000-April 12. 49p.

Office of the Vice Provost and the Disaster-Resistant University Steering Committee. (2003) Strategic Plan for Loss Reduction and Risk Management: University of California, Berkeley. Institute of Urban and Regional Development, University of California, Berkeley, Berkeley, CA, USA, Working Paper 2000-03., 56p.

UCLA Office of Environment, Health and Safety (2013) Employee Safety Handbook. University of California, Los Angeles. Los Angeles, CA, USA, 53p.

Department of Project Management (2012) Seismic Engineering Guidelines. University of Stanford, Stanford, CA, USA, 40p.

Dymarski, M. (2010) Lessons Learned from Labs 21: Retrofitting of Chemistry Laboratories. University of Toronto, Toronto, CA, 34p.

Kohler, C.E. and Gray, W.E. (Accessed 16 Feb. 2017) Earthquake Preparedness for Laboratories. Indiana University, Bloomington, IN, USA: https://igs.indiana.edu/EarthquakeExperience/ EarthquakePreparednessForLaboratories, 4p.

University of Victoria (2013) Earthquake Safety in Labs. University of Victoria, BC, CA, 1p.

University of California Industrial Hygiene Program Management Group (2007) Laboratory Safety Design Guide. University of California, CA, USA, pp 126.

Employee Health and Safety (2005) Laboratory Earthquake Preparedness. University of California, Riverside. Riverside, CA, USA, pp3.

Mechanical Engineering Department (2006) Laboratory Safety Guidelines. California State Polytechnic State University, Pomona, CA, USA, pp 2.

Washington University in St. Louis (2016) Initial Laboratory Safety Training. Washington University in St.Louis, MO, USA, pp 148.

Kemsley, J., Tremblay, J.F., and Johnson, J. (Accessed 28 March 2017) Japan Fights for its Rising Sun. ACS Publications: http://pubs.acs.org/cen/news/89/i12/8912notw1.html?, C&EN News: 21/3/2017, 89(12), 8-9.

University of California, Santa Barbara (Accessed 29 March 2017) Earthquake Damages to Labs. Environmental Health and Safety Department: http://www.ehs.ucsb.edu/ files/docs/ls/QuakeDamages.pdf.

FEMA (2011) Reducing the Risks of Nonstructural Earthquake Damage – A Practical Guide. Federal Emergency Management Agency, pp 197.

Greene, G. (Accessed 29 March 2017) The K-T Boundaries of Moss Landing Marine Labs. https://anniversary.mlml.calstate.edu/2016/07/the-k-t-boundary-of-moss-landing-marine-labs.


ارجاعات

  • در حال حاضر ارجاعی نیست.


تماس با ما حامیان مجله تمامی حقوق این سایت متعلق به پژوهشنامه زلزله شناسی و مهندسی زلزله است